The Metacognitive Loop: An Architecture for Building Robust Intelligent Systems
نویسندگان
چکیده
What commonsense knowledge do intelligent systems need, in order to recover from failures or deal with unexpected situations? It is impractical to represent predetermined solutions to deal with every unanticipated situation or provide predetermined fixes for all the different ways in which systems may fail. We contend that intelligent systems require only a finite set of anomaly-handling strategies to muddle through anomalous situations. We describe a generalized metacognition module that implements such a set of anomaly-handling strategies and that in principle can be attached to any host system to improve the robustness of that system. Several implemented studies are reported, that support our contention.
منابع مشابه
Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کاملDesign of robust carrier tracking systems in high dynamic and high noise conditions, with emphasis on neuro-fuzzy controller
The robust carrier tracking is defined as the ability of a receiver to determine the phase and frequency of the input carrier signal in unusual conditions such as signal loss, input signal fading, high receiver dynamic, or other destructive effects of propagation. An implementation of tight tracking can be understood in terms of adopting a very narrow loop bandwidth that contradict with the req...
متن کاملLogic, Self-awareness and Self-improvement: the Metacognitive Loop and the Problem of Brittleness
This essay describes a general approach to building perturbation-tolerant autonomous systems, based on the conviction that artificial agents should be able to notice when something is amiss, assess the anomaly, and guide a solution into place. This basic strategy of self-guided learning is termed the metacognitive loop; it involves the system monitoring, reasoning about, and, when necessary, al...
متن کاملDecentralised Metacognition in Context-Aware Autonomic Systems: Some Key Challenges
A distributed non-hierarchical metacognitive architecture is one in which all meta-level reasoning components are subject to meta-level monitoring and management by other components. Such metacognitive distribution can support the robustness of distributed IT systems in which humans and artificial agents are participants. However, robust metacognition also needs to be context-aware and use dive...
متن کاملA Context-aware Architecture for Mental Model Sharing through Semantic Movement in Intelligent Agents
Recent studies in multi-agent systems are paying increasingly more attention to the paradigm of designing intelligent agents with human inspired concepts. One of the main cognitive concepts driving the core of many recent approaches in multi agent systems is shared mental models. In this paper, we propose an architecture for sharing mental models based on a new concept called semantic movement....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010